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Employing results derived by the author for solutions of an abstract

integrodifferential equation in Hu bert space , we obtain stability and

growth estimates for electric fie’ds in nonconducting material dielectrics .

It is assumed that a linear constitutive equation of Maxwell-Hopkinson

type relates the electric field and the electric displacement field in

the dielectric; specific results for a simple memory function of exponen-

tial type are given .
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1. Introduction ILI11!~i~~Let Cx ,t), i 1,2 ,3 , denote a Lorentz reference frame where (x 1)

represe~it rectangular Cartesian coordinates and t is the time para~aeter;

in this frame of reference the local forms of Maxwell’s equations are

+ curl E 0, div B = 0 (l.la)

curl H - 0, div D 0 (l.lb)

provided that the density of free current and the magnetization ~

are each equal to the zero vector and the density of free charge Q,-. 0.

In (1.la) and (l.lb) B is , of course , the magnetic flux density, while

E, H, and D represent the electric field , magnetic intensity , and

electric displacem ent vectors , respectively .

To obtain a determinate system of equations for the fields ap-

pearing in (1.1) it is also necessary to append certain constitutive

equations , the form of such relations being dependent on the nature of

the material in which the electric and magnetic fields occur. For ex-

ample , in a vacuum we have the classical constitutive relations

B (1.2)

where E , are fundamental constants satisfying ~~~~ C
2

, c being

the speed cf light in a vacuum . The next simplest kind of material in

which ~~~~~ may occur is a rigid , linear , stationary non-conducting di-

electric whose constitutive relations , viz.,

(1.3)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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were given by Maxwell [1] in 1873; in (1.3) €,~~ are constant second

order tensors which are proportional to the identity tensor if the

::.ater dl is isotropic. As pointed out by Toupin and Rivlin 1T2 ) the

rt~~u~ ions (1.3) do not account for the observed absorbtion and disper-

sion of electromagnetic waves in non-conductors .

In 1877 Hopkinson [3], in connection with his studies on the resi-

dual charge of the Leyden jar (and following a suggestion of Maxwell),

proposed a constitutive equation for the electric displacement in a

non-conducting dielectric of the form

D( t ) EE(t) + f ~ Ct t )E( r )d t  (1. L~ )

where £ > 0 and q(t), t � 0, is a decreasing functions of t which is

continuous for 0 s t < ~ . As indicated in [2) Hopkinson was able to

correlate his data on the residual charge of L.eyden jars by “Lking

suitable adjustments of the memory function ~(t); for ii. . , he points

out in [3] that a suitable memory function for glass would ~e a linear

combination of exponentials with the coefficients in the expansion being

dependent upon the silica composition of the material.

We shall be concerned in this paper with the growth behavior of

electric fields which occur in non—conducting material dielectrics

that are governed by the constitutive hypothesis (1.~e ); following tavis

[t+ J we append to the system consisting of (1.1) and (1.4) the relation

> 0 (1.5)

ResultE concerning continuous dependence of the electric field on per-

turbQtions o. the memory function •, etc., may be obtained via a suitable

interpretat~ t~ of the abstract results contained in [5).



2. Growth Estimates for an Abstract Integrodifferential ~~uation

in Hu bert Space

T:~~oughout the remainder of this paper we deal with the constitu-

tive ~t~lations (l.
L~), (1.5) and assume, for the sake of convenience ,

that E(t) 0 for t < 0. Then , as indicated in [‘43 , we may solve (l.’4)

for E(t) by the usual technique of successive approximations and we get

= € 1D(t ) + €~~~~ f~~~(t—t)~~(t)dt (2.1)

where

~(t) = ~ (-l)~~~~(t) (2.2)
n 1

(t) = c~~~~(t) (2.3)

(t) J~~~~(t-T)~
’
~~~(T)dT , n � 2. (2.’4)

Because of the assumed continuity of 4(t), 0 s t < ~ , ~(t) will be in

C[0,T) if the series in (2.2) converges uniformly for 0 � t < T <

such uniform convergence will be postulated in the next section where

we obtain upper and lower bounds for sup k(t)J and sup ~ (t)I in terms
C0 ,T) [0 ,T)

of sup j~~(t)~ and sup t~(t)I.
[0,T) [0 ,T)

The following simple observation is essential.

Lemm a I (Davis [‘4]) In any non-conducting material dielectric for

which (1.4), (1.5) are valid , and E(t) 0, t < 0, the electric field

and the electric displacement field satisfy

(~~E + $*E) = 1j~
l 

~~ (2.5)

-— ~~~~~~ _ I~~~~~ ~~~ ~~~~~ - . , .  
_____________________
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= ~D + ~*~~D (2.6)

where

(2.7)

and for any vector field A

= grad (div ~ ) - curl curl A (2.8)

Proof By virtue of (l.lb), (2.1), (2.2) - (2.4) and the spatial inde-

penden~e of ~(t),

= - curl curl E (2.9)

But

curlE -
~~~~~~

- i4j
~ 

(2.10)

by virtue of Maxwell’s first equation (l.la) and our constitutive

hypothesis (1.5). Thus

= ~i (curl = ii(curl H)~ = 

~~~ 
(2.11)

in view of (l.lb). The integrodiffereritial equation for ~(t)., i.e.,

(2.5) now follows from direct substitution of (1.4) into (2.11) while

(2.6), the integrodifferential equation which governs the evolution of

D(t), follows via direct substitution of (2.1) into (2.11).

Our goal in the present work is to derive stability and growth

estimates for solutions ECx,t), D(x,t) to (2.5) and (2.6) respectively

where we assume tha t (x,t) C ~ x [0 ,T) with ~ c a bounded region

with smooth boundary 3~ and T > 0 a finite real number. We assume also

that the electric field and the electric displacement field satisfy

initial data of the form

________________________ -
~~~~~~~~~~~~~~~: 

—-- —.- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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= 
~o
(&, (2.12)

= (2.13)

for m~~ x ~ ~2 , where E . .  . ,D1 are continuous functions on £? , and

homogeneous boundary data of the form

E(x,t) D(x,t) ~, Cx ,t )  € ~~ x [0 ,T). (2.14)

In order to obtain the desired growth estimates for the systems

consisting of (2.5), (2.12), (2.14a) and (2.6) , (2.13), (2.l4b), re-

spectively, we first convert these initial-boundary value problems into

initial value problems for abstract integrodiffereritial equations in

an appropriate Hu bert space setting . Following Dafermos (1)

we denote by H, H~ real H.ilbert spaces with H+ dense in H and H.,. c H

algebraically and topologica].ly. The inner products on H, H.,. are

denoted by < ,> and < ,>
., , respectively . Let H denote the dual of H.,.

via the inner product of H, i.e., H is the completion of H under the norm

I h ~H _ = sup (2.15)
VEH~ {

~~( f ~
and let L5 (H ÷,H_ ) be the space of symmetric bounded linear operators

f rom H~ into H_ . The abstract initial value problem we shall employ

in this paper then has the form

— + f
t
~~ (t_ ~r)~~(t)dT 0, 0 � t < T (2.16)

~~
‘ 

~~~~~ 
= (2.17)

(1) Sufficien; conditions for the asymptotic stability of the fields
~(t), D(t) may be deduced from Dafermos’ work [9].

- ...—-
. .
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u(t) 0, —
~~ 

< t < 0 (2.18)

where u:[0,T) ~ H,~, f,g c H,. and

(i) N Ls(H + , H )

(ii) K(.t), Kt(t) € L2((-°°,°°); LsQI+ ,H.))

with 
~~ 

denoting the strong operator derivative of ~~~. Now set

N = € C2([0 ,T); H~ ) sup Iw (t)~ I~~ ~ N
2}, (2.19)

[0 ,T)

for some arbitrary real number N. Then the following specialization

of a result due to Bloom [6] applies to any solution u ~ C
2(C0 ,T); H.,.)

of (2.16) — (2 . 1 8 )  for which € C ([0 ,T); H.,,) and € C ( C 0 ,T ) ;  H,):

Proposition I Let ~~~, € N be any solution of (2.16) - (2.18) and set

F(t) = l I ~ (t ) i I 2 
+ B (t+t 0

) 2 , 0 � t < T (2.20) H
where 8, to are nonnegative real numbers . If ~(t) satisfies

— <v ,K(0)v> ~ K~jvj [~, ~~v € H,~ (2.21)

with

K � yT sup I I K ~
(t)H (H H )

(2) (2:22)
[0,T) L 

+~~

then for all t, 0 � t < T, F(t) satisfies

F(t)F”(t) — [F’(t))2 ~ —2F(t) (2G (0) + 8) (2.23)

where

G(t) E(t) + Osup I [ ~~( t ) I ( L (  ) (2.24)
[0 T) +

, 
—

(2) y is the embedding constant , i.e., as c H topologically,
I I , v € H ,,., where , for the sake of convenience we
wil l  ~~~~~ ~ to be such that 0 < y < 1; the reader can easy modify
the ensu]i.~ analysis for the case where y > 0 .

(3) 8 !yTN 42
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and

E (t) 4<ut(t) , u
~
(.t)> — ~-<u(t), Nu (t)> (2.25)

Remarks The proof of proposition I, stated above , is given in [63 and

proceeds via a logarithmic convexity argument due to Knops and Payne

[10] for the special case in which K(t) 0, 0 � t < T. As no definiteness

conditions are imposed on the operator N the technique is particulary

well suited to handling certain non-well posed problems . We note in

passing that the reader may easily check that the assumption of zero

past history , i.e. (2.18), allows us to replace expressions such as

su~ II ~ (t)lI LW ,H ) which appear in [6], [7], and [8] by supremums
[0 ,co) +

over the finite time interval [O ,T). As demonstrated in [6] and [7]

all the growth estimates for the abstract system (2.16) - (2.18), which

we shall employ in this paper , follow directly from the basic estimate

(2.23).

We now recast our initial-boundary - value problem (2.6), (2.13),

(2.14b) for D(x,t) into an initial—value problem of the form (2.16) — (2.18)

as fo11ows:~~
’4
~

Let C~(~~) denote the set of three dimensional vector fields with coin—0

pact support in c~ whose components are in C~(~~). Following Dafermos

[9] we define H to be the completion of C (n) under the norm induced by

tIic inric’r product

<v ,w>j~ f~.~v~w1 d~ (2.26)

and take H,. to be completion of C (~2) under the norm induced by the

(4) the argu~..nt follows the same pattern as that employed in [6]
and [7 1 f— .’ the equations of motion -for a three dimensional isothermal
linear vi~:coelastic material .

~

. . ..— :.i. ,.:~.
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inner product

= 
~~~~~ ~~~ d~ 

(2.27)

Finally ,  H is defined to be the completion of c (c~
) under the norm

H~~Ij ~ = sup [i< 
~>j~I/i I~~Hj~ 

3 (2.28)
- w€H ÷ +

Operators N € L
5
(H÷ , H_

) and K(t) € L2C(-~~,~~); L5
(H÷,

H)) are now defined

as follows
2

= N~~w~< 
E 
~~ 

ô jk~j1 ax.a~ 
€ H ,~ (2.29)

(K(t)w). — 4(t)N.kwk, ~~~~~ 
H ,4, . (2.30)

With these definitions of H, H.,,, H and the operators N ,~~~, the

system consisting of (2.6), (2.13), and (2.14b ) assumes the form

— ND + f ~~ 
K (t—T)D(T)dT Q (2.31)

D(0) = 
~~~~ 

(2.32)

D(t) = 0, —~ < T < 0 (2.33)

for  0 s t < T, where D:[0,T) 
~ 
H÷ , ~~~ 

Fl,,,. We now seek to

delineate the form which the conditions expressed by (2.21) and (2.22)

assume in the present situation .

In terms of our definitions of Fl and H,,,, (2.21) assumes the form

—f~v.[K(0)v]1dx � K f
~ ~~~~ 

‘

~~ 

dx , ~ e H ,,, ( 2 . 3 4 )  

~~~~~~~~~~~~~~~~~~~~



or , in view of (2.30),

2

~~~~ 
~~~~~~~~ 

‘1
~ 

d~ � K 
~~ ~ 

-
~~

-
~~~~~~ d~~. (2.35)

Integration of the expression on the left—hand side of (2.35) by parts ,

and an application of the divergence theorem , in conjunction with the

fact that the vector field v vanishes on ac2, ‘V’v c H,,,, yields the

result that (2.35) is equivalent to

~~0) ~ — K€~~.. (2.36)

Note , however , that the hypotheses of proposition I, i.e. (2.22) also

require that

K � yT suP ) H~ t ( t ) H L (~ ,H )~ 
(2.37)

-- A simple computation , however , yields

<v ,K~ (t)~~~j~ j f ~ v±[~~~(t)~~]±d~~ 
2 

(2.38)

= I~ (t)I 
tf c~

6ij6kl ~i aX~~aX
1 

d~~

= Jkt ) j j  —i —i dx = J~~(-t ) j 
Hv I j~ax~ ax~ — 

-

for all V € H,,,, where we have again made use of the fact that ~ vanishes

on 3~2. However , by virtue of the Schwarz inequality and the definitions

of H,

(
~~

) This resL t follows via a standard trace theorem ; I am indebted to
P r o f .  S. Antman for this observation .
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� ~~~~~~~~~~~ (2.39)

�

for all v € H,,,, since H v I l~ ~ y l I ~~I I ~~ ’ V~ e H,,,, and we are assuming
that y € (0,1). Therefore ,

= I~~(t)I~’~p, V t  € [0 ,T) (2.40)

implying that (2.36) is to be restricted by the condition

K � SU~ j~~(t)j (2.41)
~~ [0 ,T)

Clearly (2.36), (2.41) are simultaneously satisfied if ~‘(t), 0 � t < T,

satisfies

~(0) � —yT sup L~~(t)L (2.42)
[0,T)

a condition to which we shall frequently return in the following sections.

In view of proposition I, and the discussion above, we have already

established the following result :

3d. 3d.
Theorem I Let M = {d€C 2([0,T); H~ )I sup 

~~~~~~ 
d~ ]

3”
~ ~ M

2}
[0 ,T) j  J

for some real number N, and let D € N be any solution of (2.6), (2.13) ,

(2.1L+b). If ~~t) satisfies (2.42) then -

F(t;B,t0
) f~D.(x,t)D.(x,t)d~ + 8(t+t0

)2, 0 � t < T,

with 8 , t nonnegative real numbers , satisfies

_____________________ A
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Fr” - F’2 ~ -2F(2G(0) + 8) ,  0 � t < T (2.43)

where
aD.(x,t) ~D.(x,t)

G(t) = ~-f ~ 
~~~ 

~~~~~~~~ 

d~ 
( 2 .~+ 4 )

• ~D. (x ,t) 3D.(x ,t)
+ ax

i 
d~ ~~~~~ 

p 1

Remarks Whereas we have written Theorem I out in some detail , we shall ,

for the most part , adhere to -the Hu bert space notation in the remainder

of the paper .

Remark Th~ most important thing to point out , at this stage of our

analysis , is that although we may easily rewrite the integrodifferential

equation (2.5) is the form ,

- + + 
~ 

f ~ ~tt
(t_T) T)dT = - ~~~~ E~ (t), (2.45)

when E(t) = 0 , t < 0, in order to be able to recast (2.45) in the

Hu bert space setting already constructed we must have •(0) = 0; in

this case we may rewrite the system consisting of (2.5), (2.12), and

(2.l4a) in the form

* t *
— N ~ + J _~ ~ (t—T)~~(T)dt = 0 (2.46)

~(0) = 
~~~~~ ~~~~~ 

(2.47)

= Q, —

~~~ 
< ‘r < 0 (2.48)

where E:[i3 ,T) -
~ 
H,,,, E0, 

~~ 
€ H,,,. The appropriate forms of the operators

--
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* *K (t) appearing in (2.46) are
2

* 
, ,

(N w). ~~~~ ~ . — + ô.  w ) (2.49)
1 c ~

,1 ik jl 3~~ ax1 ik k

* 
2

(K (t)w). = ~ d •(t)~~. .w. 
(2.50)-~ ~~~ ~~dt 

13]

where w € H,,,. It would than be possible to carry over most of the

stability and growth estimates derived in [6] and [7] to the system

(2.46) - (2.48). However , many experimental studies , including those

of Hopkinson [3], indicate that suitable memory functions for various

kinds of dielectrics , which are compatible with the basic constitutive

equation (1.4), do not satisfy the condition that 4(0) = 0. In parti-

cular , we have already mentioned Hopkinson ’s experimental attempts

to verify a linear combination of exponential functions as being a

reasonable memory function for glass and in this paper we shall be

- intere sted in applying some of our growth and stability estimates to

the simple case where ~(t) = e’t . Our approach to the derivation of

growth and stability estimates for the electric field E(x,t) shall,

therefore , be routed through the system (2.31) - (2.33). The results

contained in [6] and [7] do yield growth and stability estimates for

the electric displacement field ~(x ,t); some corresponding theorems for

the electric field may then be obtained by using the consitutive re—

lations (1.4) and (2.1) and various estimates on the kernel functions

which follow from (2.2) - (2.4) and which are derived in the next

section .

L 
_ _  

.



3. Uppç~ and Lower Bounds for sup I~~( t ) I  and sup I~~(tfl[0 ,T) [U ,T)

Our first result in this section is the following

1.~emm a II Let q (t) € C1[0 ,T) and assume that (2.2),and the

series which is obtained from (2.2) by term by term differeriti-

tion ,are both uniformly convergent , 0 � t < T. Then provided

sup j~~(t)J < € /T we have
[0 ,T)

(a) sup I~~(t)~ � c&(T) (3.1)
[0,T)

sup I~~(t)I

(b) sup ~(t)I ~ cx(T) (1 + T bO
~
T)

I,(t)J
) (3.2)

[0 ,T)

where ~(T) ~~~‘? H~(t )I/(€—T sup I~~(t)I)
[0 ,T) [0 ,T)

Proof From (2.2)

I~~(t)I � ~~I~~~(t)I , 0 � t < T. (3.3)

But from (2.3) and (2.4) we have , for n � 2,

~~(t) = ~~~~~~~~~~~~~~~~~~~~~ 0 s t < T (3.4)

So

sup I~~(T)Isup I~~~
1(T)I. (3.5)

~ [0,T) [0 ,T)

S i r ct ~ (3.5) is valid for all t , 0 � t < T , 
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sup ~°( t ) I  � sup I~~( t ) I s u p  I 4 ~~~~(t)I (3 . 6 )
[0,T) € [0,T) [0,T)

successive application of the recursion formula (3.6) then

~ i elds

~~p I~~ (t) I (~ sup I~~(t) I)~~
1 sup I~~~(t) I (3.7)

0,T) C [0 ,T) [O ,T)

n-
= —C— sup I~~(tfl) sup Jq (t)I

~ € [0 ,T) [0 ,T)

T’~ 
-

(sup I4’ (t)I)~~.
€~~ [o ,T)

Therefore , f rom (3.3) we have

~ n-IT 

~ 
(sup I 4 I ) ’~, 0 � t T ( 3 . 8 )

n 1  € E0 ,T)

or

I~~(t)I ~ (~ sup I~~(t)I)~ , 0 � t T. (3.9)
n 1  [0 ,T)

From our assumption that sup c~( t )I  < it follows that
[0,T)

the geometric series on the right-hand side of (3.9) con-

verges and , in fact , we have

T sup I~~(t)I

I~~(t)I � 1(
C0~

T) 
I~~(t)T) 

(3.10)

L0 ,T)

.r all t , 0 ~ t < T, so that part (a) of Lemma II follows

by taking the supremum over [0 ,T) in (3.10). In order to

p~’ove part (b )  of the lemma we beginning by noting that
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our hypothes~.s imply that

I~~(t)I � ~~ I~~~(t)I, 0 s t < T. (3.11)

Howe ver ,

d/dt f ~ ~(t—r)~
’
~~~(’r)dT 

(3.12)

= ____ • •‘~
“1(t) + lI

t 
~t

(t_T)
~~~~
’(T)dt

for 0 < t < T. Therefore ,

� ~ t~~(0 )iI ~~~~
1(t)I + su p I~~(T)Isup ~~~~(T)I (3.13)

C ~ [0 ,T) [0 ,T)

� ~-(~~ (Ofl + T sup i~~(t)I)sup l~~~
’1(T )!

C [0,T) C0 ,T)

But , from the recursion formula (3.73
)

n-2
sup I~

’
~
-’(T)j T 

-
~~~ (sup ,(T)I)n~

l (3.14)
10 ,T) ~n— E0 ,T)

so that
n- 2

I~~~(t)I � (I$ (0)I + T sup I~~(T)I) 
T (sup I~~(t)l)

’
~~ 

(3.15)
[0 ,T) €~~ [0 ,T)

Substitution of (3.15) in (3.11) yields

~ n-2
I~~(t)I s (I~~(0)I + T sup I~~(t)I) 

~ T 

~ 
(sup 1~~(1)1 )

n_ 1 
(3.16)

[O ,T) n=1 C [0 ,T)

for  0 s t < T , or , replacing I$ (0)I by sup I~~(t)I
[0 ,T)
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(sup I~~(T)I + T sup I~~(t)I) fT sup 1~~~~~1 )1
fl ~~

~~t ) I  <~[0 ,T) 2 
L0~ T) • 

_[0 ,T) 
€ 

(3.17)
T sup I~~~T)I n-i
[0,T)

/ sup ~~r)I\ T sup I~~(i)I
- I [0 ,T) 1 1 [0,T) (3.18)
- ~ 1 + T sup I~~~~~T) l)  ‘7 (€—T sup l~~~’r )i)

[0 ,T) • E0 ,T)

as we have assumed sup i c ~(r)I < €/T. Therefore,
[0,T)

sup I~~(-t)Ic~(T) (1 + T [O~ T)~~~~~)) (3.19)

[0 ,T)

for 0 ~ t < T, and the desired result follows by -caking the

supremum on the left-hand side of (3.19).

Remarks We note here , in passing, an al’ternative method of

deriving the results contained in Lemma II. We begin by

multipl ,ing (2.4) through by (_1)fl and summing over n ,

2 ~ n < ~~~, to get

n~ 2 
f
t 

•
1

(t - t ) [~~~ (-l)~~~~~~(T)]dT (3.20)

where we have used our assumption of uniform convergence to

interchange the integration and summation operations. But

by (2.2) and (2.3)

~ (-l)~~~~(t) G(t) + •(t) (3.21)
n 2  C

so ~~~~~ may be recast in the form

i,i
• :ii~~~

— — - , . •
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+ ~~ ~ (t) - ~ 
~ (t T)[ ~ ( l ) fl_ l

~
fl_l

~~~~]d (3.22)
C € n 2

— 1

As ~ direct consequence of (3.222
) we have ~(0) = - I

It we differentiate (3.222
) through with respect to t now

we obtain

= — ~ (t) — ç (0)~~(t) -. f
t 

~~t
(t _ t )

~~~
( T ) d T , (3.23)

a result which will be employed in the proof of Lemma III.

Note that (3.23), in conjunction with c~(0) - I

implies that ~(O) 
_l t~( 0 )  + L. ~

2(o)

In order to establish part (a) of Lemma II , we rewrite

(3.22
2
) in the form

4 ( t )  — 
~~

- 
~(t) 

— !~ j~ ~
(t— -r )’~(T)dT (3.24)

Then

I~~(t)I + sup J~~(T)If~ I~~(T)Idt ( 3 . 2 5 )
€ c [0,T)

sup I~~(T)I(l + T sup I~~(-r )I)~ [0 ,T) [0,T)

or, since (3.25) is valid for all t , 0 � t <

- sup I~~(t ) I  � sup I$ (t)I (l + T sup I~~(t)I) (3.26)
tO ,T) [0,T) [0 ,T)

which , in turn , may be rewritten as 

~~~~~~~~~
- - - ri~~~~ TJ
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sup 4~( t )I ( c  — T sup 4 (tH) < sup I~~(t)I , 0 t < T (3.27)
[0 ,T) [0 ,T) [0 ,T)

Fin al 2y ,  as w are assuming that sup J~~(t)J < € I T , we may
[0 ,T)

c.. ivide both s:.. ~ of (3.27) through by € — T sup I~~(t)I to
[0 ,T)

obtain the desired result ; the result contained in part (b)

of Lemma II may be obtained from (3.23) in an analogous

manner.

Our next lemma gives lower bounds for sup I~~(t)I and
[0 ,T)

sup I~~(t)I in terms of sup 1 (t)I and sup I~~(t)I.[0 ,T) [0,T) [0 ,T)

Lemma III Under the conditions which prevail in Lemma II

(a) sup i~~(t)I � sup I
~~
(t)I/x T 

(3.28)
[0,T) EO ,T)

where x .—. € + T sup I4, (t)I. If , additionally ,
I [0,T)

sup 13 (t )I � I~~(0)I
2/(€— TIq( 0)I ) ( 3 . 2 9 )

[0 ,T) 
-

then sup l~~(t )l (€—T I4~(0)J) — I,(0)1 2

(b) sup I~’(tfl ~ 
1O ,T) 

2 2[0 ,T) 2€ + €T sup I~~(t)I[0 ,T)

Proof In order to prove part (a) recall that by virtue

of (3.222
)

= — €~~(t) — f ~ ~(t—T )~~(T)dr, 0 � t < T (3.30)

L.. —~~~~~~~
--

~~~~
-‘-— —--“-. -----— 

~~~~t ~~~~~~~~~~~~~~~~~~~~~~ 
- - - -  

-- —- —.--- -.- .-  .- - - — -•--- -~~~~
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so that

I~~(t)I < €I ~~(t)I + sup 1t (T) I f ~ ~(X )IdA (3.31)
[0,T)

~ e14 (t )i + T sup 14 (’r)Isup 1 4 ( ’ r ) i
[0 ,T) C0 ,T)

� Cc + T sup J~~(-r)I)sup J~~(’r )J
[0 ,T) [0 ,T)

= XT sup ~(-t )I .
[0 ,T)

Therefore , taking the supremum over [0 ,T) in (3.314
) we get

sup I~~ t )I � XT sup I~~(t)j (3.32)
[0,T) [0 ,T)

and as y~. > U the desired result follows immediately . We

now assume that in addition to the other hypotheses of

Lemma Il , the estimate (3.29) also holds. If we solve (3.23)

for ~ we obviously get

~(t) = - €~~(t) - ~(0)~~(t) - f
t 

~~t
( t _ T ) T

~~~~
T (3.33)

for all t , 0 � t < T. Thus ,

I~~(t)I € I~~(t)I + (J ~~(O)I + T sup 1 6 ( T ) I ) s u p  k(t)I (3.34)
[0 ,T) [0 ,T)

Howeve r, ~(t) = f ~ ~(t)d’r + ~~0), so

-— —~~~.—— —

L •_ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ _ _  .
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s T sup j~~(t)I + 1 I~~~0)I (3.35)
[0,T) C

where we have made use of the relation between 4,(0) and

~~Q ) .  Since 
~~~~~~~~ 

holds for  0 � t < T, we have

sup I~~(t)I < T sup I~~(t)l + I I~~~0)I[U ,T) [O ,T) C

and substitution of this result into (3.34) yields

I~~(t )I � € I ~~(t)I + (I~~(O)j + T sup I~ ( T ) I )
[0,T)

CT sup I~~(’r)I 
+ 1

[0,T) C

sup I~~(r )i (C + T [I~~(0)I + T sup
[0 ,T) [0 ,T)

+ I i~~(0)l (I~~(O)I + T sup J~~(T)I)€ [0 ,T)

Taking the supremum over [U ,T) on the left-hand side of

and rearranging terms , we get

sup ~~~r)l
(]_u l~~(0)I) — I, l~~(0)I~[0 ,T) C C

� sup I~~(t)1 (3.38)
€ + T (I~~(0)I + T sup I~~(T)I) [0 ,T)

[0 ,T)

Note that our requirement that sup I~~(T)I < € /T implies
[0,T)

toat the coefficient of sup 1 (t)I, in the numerator of the
[0 ,T)

expression on the left-hand side of (3.38), is positive (as

is the ‘umerator itself in view of (3.29)). Therefore

_ __ _ _  - --  --- - -. . .-- -• _ _ _ _
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sup I~~(t)j (C - T ~~(0)J) - J~~(0 ) I
2

sup k> (t)I � [O ,T )  • (3.39)
[0,T) 2 

+ € T I~~(0)I + €T
2 sup ~(tfl[0 ,T)

sup i~~(t)I (c - T j~~(0)I) - J~~(0)i
2

2 E 2 
+ €T sup

• • [0 ,T)

where we have used the fact that TI$ (0)I < € . This establishes

part (b) of the lemma.

Example In order to examine the implications of Lemmas II

and III we consider the simple example q (t) =

0 � t < T, arid denote the corresponding ‘~‘ as ~~( T ;  e”t ).

Since sup ~(t)I = 1, the condition that sup ~(t)I <

[0 ,T) [0 ,T)

is equivalent to the condition that T € ; if this simple

i n e q u a l i t y  is satisfied then part (a) of Lemma II implies

that

sup I~~(-r ; e
t )I � —‘

~~
‘
~~~ 

; T < € (3.40)
0�T<T C

Clearly , sup I~~(t)I = 1, so part (b) of Lemma II yields
[0 ,T)

sup I~’(’r ; e
t )l < 

~~~~~~ 
; T < € (3.41)

0<T<T C

Turning now to Lemma III we again require that T < c; part

(a) then yields the lower bound

SL , I~~~(T ;  e”t )I � 
~-~f’~ ; T < (3.42) 

.- - -.~
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while for part (b) of Lemma III we must require that (3.29) be satisfied ,

i.e., that € - T > 1. We then have the lower bound

sup j~~(’r ; e
_t

)1 � 
;_T_ 1 

2 ~ 
1 < — T. (3.43)

O�T<T 2€ + €T 
-

Clearly (3.43) requires that € > 1; in addition , there is obviously no

need to a .so specify that T < € since this is automatically satisfied

whenever the condition implying the validity of the estimate in (3.43) is.

Remark In the example considered above, i.e., 4(t) = e t , the condition

expressed by (2.42) becomes

— 
~~~ ~ ( G )  — — yT sup J~~(T , e t

)I (3.44)
C C O�T<T

. -t 1+T
However , from (3.41) we have sup ~4~(T;e )~ ~ T(€-T~ 

, if T < € .

0�r<T

Thus (3.44) wii~ be satisfied if --

� T • 
(1+T) - y(1+T) (3 45)

€ T (€-T) 
- 

€-T

and simple manipulation shows that (3.45) is equivalent to -

T � ~~~~ ~~~T � € (y € (0,1)) (3.46)

4. (rowth ~heorems for Electric Fields in Nonconducting 
Material

Dielectrics

Our first result , is based upon the following specialization of a

theorem obtained in [63 for the abstract system (2.16) - (2.18):
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Proposition II: Let U C N be any solution of (2.16) - (2.18) for which

E (0) ~ -k for some k > 0. If KCt) satisfies (2.21), (2.22) and

~up !~(t)I ‘ L(H H ) ~ 
(4.1)

[O ,T) + ‘ —

then,provided <f ,~~> > 0,

~ IWV exp {<2~~,~ >t/ ll ~~H
2}, 0 s t < T. (4.2)

In view of the identification which we have already made between

the abstract system (2.16) - (2.18) and the initial—boundary value

problem (2.6), (2.13), (2.14b), we can immediately state

Theorem II Let D € M be any solution of (2.6), (2.13), (2.14b) with

the class M as defined in Theorem I, §2 , and suppose that ~(t) satisfies

(2.42). If

- <
~2c ’ ~

Q0>~ 
� - 2k (4.3a)

for s om e k >  O and

sup l~~(t)( 
� €~ k/e (4.3b)

[0 ,T)

then, provided <D~~~~ 1>j j  > 0,

� I I ~Q JJ ~ exp{<2~0,D1>~ t/ IJ
~ 0JJ A } ,  0 � t < T (~~.‘~ )

In order to obtain the corresponding growth theorem for solutions

of the initial boundary value problem (2.5), (2.12), (2.J.4a) we proceed

as follows : ~~ ~ the constitutive equation of Hopkinson , i.e. (1.4), 
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and the assumption that ECt ) = 0, -~~~ < t < 0, we have for 0 � t < T

ID(t )I i~ d iE(t )l ~ + f~ k(t-T)~ E (t)~ j~~dt (v.5)

~ 
€j
~~
E(t)

~~ H 
+ sup I+ (t)If~ i l E ~T)H~ dT
[0 ,T)

~ XT ~~~~~~
{0,T)

Now , directly from (2.1) we have

D = €E (4.6)
—o ‘•—O

and

~(t) ~(t) + 4~:f t
~ (t—t)D(t)dt + ~ ( 0 ) D ( t ) ]  (4.7)

€ o t

from which (as ~(O) = - -~-~(0)) we easily obtain

D € (E + 
4(0) E ) (4.8)

C

Therefore , c.on~iition (4.3a) is equivalent to

+ 
ç (O) 

E j — <E ,NE >“ � —2k/€ 2, k > o
-
~~~~ € ~o H ~o ——o H

On the other hand , ( 2 .42) is equivalent to

4~(0) � €yT sup ).~(t)} (4.10)
[0 ,T)

in view of the stated relation between the initial values of ~ and ‘i’.

Suppose now that ~~(t )  ~ C
1[0 ,T), that sup I~~(t)i 

< € /T and that both
[0 ,T)

(2..) 30J the derived series , which is obtained from (2.2) via term by

term differentiation , are uniformly convergent , 0 < t < T. Then , as a

d rect con~~-q~ ~ice of Lemma IIb, (4.10) will be satisfied if
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~~~~~

4 ( 0)  � € y c t ( T ) CJ .  + T 
~~~~~~~~~ 

) (4.11)

[0,T)

Under L e same condi tions stated above , it follows from Lemma lIa that

(4.~~b) will be satisfied if

c~(T) � €~.~k/O (4.12)

In view of Theorem II, and the above discussion , we may state our

first growth estimate for the electric field , viz.,

Corollary I Let E c M be any solution of (2.5) , (2.12), (2.14a),

and suppose that the hypotheses of Lemma II are satisfied . If

(i) the initial data Ec~ ~~ 
satisfy (4.9) for some k > 0,

(ii) ~~~t )  satisfies (4.11) and (4.12)

(iii) ~(O) 
~~~ 

+ <
~o’~ 1

>
~i 

> ~

then for al~ t, U � t <

<E ,E + 
4(0) E >“t

P ! L H H � 

~~l i~o I1 ~ 
ex~{ E0II A 

-o H 

} 

(4 . 1 6)

Example Consider the simple case ~i(t ) = e t. We have already seen

in § 3 that aCT) = , sup l~
(t) l < €/T if and only if T < c , and that

[0 ,T)

(2.42) is satisfied if T ~ € (l—y)/(€y + 2 ) ;  this latter condition is of

course , ~quivaient to (4.11) in this case. If we use the definition

of 0, it is a simple matter to show that (4.12) is satisfied if and only

4
i~~~ T < c qi/(1 + € i4.’) ,  where ~4’ 

2pk/yN . We may , therefore , specialize

Corollary I, follows : Let E € N be any solution of (2.5), (2.12)

~~~~i~~~~~~~~
-
~~~

-
~----- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(l.i4a) with 4(t) e . If

Ci’) + 1 E — <E ,NE > ‘ s — 2k/c 2, k > 0 (4.14)
€ —o H —o — —o H

c (1—y) €(ii’) T � min {~~~~1 ‘ 
1, ~ 2~k/yN

4 (4.15)

(iii’) IE i~ > -€<E ,E1>fj (4.16)—o H —o

then for all t , 0 ~ t <

<
~o’~1 

+ -~~~ E ~~~~€ —o H Isup I f ~(T ) i i~ � (
~~~~) j i E I j ~ ex~

{ ~J (4.17)
[0 ,T)

- —o ‘ H

Our next set of growth estimates is based upon the following

specialization of a theorem derived in [6]:

Proposition III Let U N be any solution of (2.16) - (2.18) for which

E (0) � - ~~, for some > 0 and suppose that the initial data satisfy

<f ,g> � /~~(0) I W j (4.18)

If ~ (t) satisfies (2.21) , (2.22) and , in addition ,

sup II K t(t)II L (H H )  > k/OT , (4.19)
[0,T)

then for all t , 0 < t < T

<2f ,g>
I ~(t)I 

~2 � [j j~~ 1
2 

+ 
40~0)3 cosh At + I sinhAt — 

4F
~ 0± (4.20)

A A

provided

2 (<2f ,g>\ 2 8G(0A = 

~ 1W j
2~ 

- ~ 0. (4.21)
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If A 2 0, then under the conditions stated above

I l~~. t H 2 � + 2I~~~0) H~ 11t + 2G(0)-t2, 0 � t < T (4.22)

In view of the indentification which has been established between

the system (2.16) - (2.18) and the initial-boundary value problem

(2.6), (.2.13 ) , and (2.l4b) we have

Theorem III Let D € N be any solution of (2.6), (2.13), (2.l4b) and

suppose that ‘~(t) satisfies (2.42). Suppose , also, that the initial

data 
~c ’ ~~ 

satisfy

i~~~ t — <D ,ND0>fi ~ 
— 2J~, (4.23)

(6)
for some k > 0 and

~~o’~ 1
>H 

� /~~t0) ( I P Q I ~~~~~, (4.24a)

G(u) = ½ ( l I Q 1Ii~ — <D0~~jD0>j~
) + f— sup j~~(t)j . (4.24b)

C 1~I[ 0 ,T)

If

sup l~ (t)I > k~ii/6T (4- .25)
[0,T)

then for all t, 0 ~ t < T,

II ~ (t )iIA [IIP O I IA  + cosh At (4.26)

sinh ~t - 
4G (0)

( 1 )  w.~ ~~~~~~ that (2.42) and (4.25) guarantee that G(0) > 0 so that

~-zes sense.

~~~~~~
—

~-- - - — -.- —.—~~~ • —~~--- - 

_~~~~~~~
_
~~;~
_.__
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— .~ f<20 ,D > ~ 2 0t~/0\when A~ f —~~~~~~~~~~~~~ r~ — ~~~~~~~~~ ‘-~~ ~ 0. If A 0, then

~~i i ~~~i~~ J } l ~0 I l ~
� ~~~~~ + 2/~~TöT HQQ H~ t + 2G(0)t

2
, 0 � t < T (4.27)

T~ ~~~~ n from th is  last theorem two new growth estimates b r  the

electric ii ~~ J , we will employ the estimate (4.53
) and will also assume

that trie conditions of Lo:runa II are sat~ sfied . In addition , as a con-

sequ en~ e of Lemma 111 (o), (4.25) is implied by

5~1j) ~~
(t)j (€-T~~~(0)I) 

- i~~(0)i
2 

-
E J , T) _________________________

2 € ~ + €T L sup l~ (t)l OT
[0 ,T)

suD )~~Ct)J � 
t 0 )~~~ . (4.28b)

L O T )  C

Thus there remains only the problem of restating (4.23) and (4.24) in

terms of th~ initial data E.D, ~~ 
associated with the electric field

and the function 4(t). To this end we note that in view of (4.6), (4.8),

ai~d Lemma Ila

G( 0 ) = !-~ (lI E 1 + ~~~~ E L I ~ - <E ,NE~~~ ) + 2-
~~sup I~~(t)I 

(4.29)

~~
-
~~

- ( I  ~~ ~~~~~~~~~~~~ 
~~ I l~ - <~0~~~o>jj

) + e~~(T)

For future reference we also note the estimate

G(0) � + ~~~~~ ~~ - <
~~~‘~~ o

>
~~ 

+ C
~
XT LO ,T)

1 ’  ~~ 
(4.30)~

’ 

— 
—

~~~~~~~~~~~~~~~~
-

~~~~~~~•~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~
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which follows directly from Lemma lila. In view of (4.29) it is clear

that (L .24a) is implied by

<E ,E + ~~~~~-~~ --~~ E >“ 

~~~~~~~ 
IE I I~ 

(4.31)
—o —1 € —o H c ~.o H

and it is easy to check thdt strict inequality in (4.31) implies that

A 2 > 0. We summarize our results in

Corollary I~ Let E N be any solution of (2.5), (2.12), (2.l4a) and

suppose that the hypothe5es of Lemma II are satisfied . If the initial

data E ,  
~~ 

satisfy (•33) , with G* as given in (4.29), and

H E 1 + •(0) E l l A  - < E ,NE~~~ � - 2~ /€~~, (4.32)

for some k > 0, while ~i(t) satisfies (4.11), (4- .28a), and (4.28b),

then for all t, 0 S t < T

( sup I J~~(t)~ i~~)
2 

� ~~{rc
2

l 1E01 I~ 
+ 4 0 ~~ cosh At (4.33)

[0,T) XT 
A

+ ~~~~~~ 
<
~ o ’~ J. 

+ 
q(0) 

E >j j )  sinh ~-t - 
4G(0)}

where

E + > “ A

= 4•( —o
’]. c —o H’\2 — 

8G(0) (4.34)

~ I I ~~l I ~ ) ~
2

j J E 0J I ~

If we allow for the possibility that 4(t) and the initial data

may satiefy A 2 0, with A defined by (4.314), then we have

-- - -• ---- —_--- -- - •---- •~~~~~~~~~~~~~T1
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Corollary III Let E € N be any solution of (2.5), (2.12), and (2.l4a).

Suppose that the. hypotheses of Lemma II are satisfied , that the initial

data s~~:l~~fy (4.32), for some k > 0 , and that

+ ____  
‘~~~~~ ( 4 . 3 5 )

If •(t) satisfies (4.11), (Li- .28a), and (4.28b), then for all t , 0 � t < T

(su p J)E (t )Hj~
)2 � -4{€ 2

~i~0 I 1 A  + (2€/2~~(0))lI~ I l ~ t + 2G(0)t2) (4.36)
[0 ,T) x~~ 

°

Example We return to our example , i.e. •(t) e t. As we have already

seen , ct(T) = XT 
= €+T , and sup 14 ( t ) I  < c/T if and only if T <

{0 ,T)

the other conditions of Lemma II are, of course , clearly satisfied .

We easily compute that

~ fl 
~~1 

+ ~ E l  ~~ — <E ,I~E >fj} + 
~~~~~~ 

(4.37a)

A A 2 A

= E i— { I I~~ + 
~ ~~~l I~ 

— <~0 ,~~0>fj } + 
~c(:+T~) 

(4- .37b)

Condition (4.31) then assumes the form -

3. 
_____+ ; ~~j -j I l ~o I 1 j ~ 

4.38

However , the conclusion of Corollary II is valid if (4.31) is replaced

by the weaker condition

+ 
~ ~o

> /2G(0) I l~~l l~ (4.39)

(this obviously being sufficient to guarantee that A 2 ~ 0) and as we
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may proceed directly with the computation of G(0) in this example , we

shall have no further recourse to (4.38). Before embarking upon the

computs-r ion of G(0) let us recall that ~(t) = e t will satisfy (4.11)

if T € (1-y)/(cy+l); also (4.28a) and (4.28b) reduce, in this case to

the simple inequalities

T(c—T-1) > and c > T + 1 ( 4 .4 0 )

€ (2€+T

so that our results are valid only for € > 1. We now compute

SUP k~(t;e )J under the assumption that C > 1. Directly from the
0�r<T

definition of c~
T
~(T , n � 2, i.e. (2.4), and the fact that •

1
(t )  = ~~

n~i 
e

_ T 

~~ 
, n � 2 (4.41)

Therefore ,

= ~ (l)
n
~
n(T) (4.42)

n—I.
- 1 — t - —r n I. • T
- — — e + e 

n 2  
—1 

~n—l (n—i)! -

= — I e~~ + e t 
~~(—1)~~~

— e~~ (
1 + 

n].

— e t Ci + [e
_T
~
’( 

— 1])

where 0 i < T < € so that It / c l < 1. Clearly , we may put this last

result in the form

h. . - -  • _  - •  __ 
_ _ _ _ _ _ _ _ _ _ _ _ _

__________________ 
- —
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~~T;e
_t
) = (3. — 1/€)e~~ — e~~~

T ; a = (4.43)

and the following facts are then easy to verify :

(I) ~ (0 ,e
_ t ) = — 1/c < 0; •I (0;e

_ t
) = 2/c > 0 (4.44)

( i i)  ~ (T;e
_t

) > 0 <=> e~~~
C > e/ (c - 1) (4.45)

(iii) ~~(r ;e
_t
) > 0 <~~~ > ~~~~~~~~ > e T~

’C . (4.46)

In other words, ~(r ; e
_t
) is initially negative and increasing and conti-

nues to increase on the interval (0, €ln [~±4~]) , becoming positive for

T > c in [—i-—].
C i

Therefore ,

sup ~(.r;e
_t

)I = max{1/c ; limI~ (T;e
t)l) (4.47)

O�T<T T+T

provided we choose

T < c ln[~ t~.] (4.48)c—i

Set t ( € )  c ~~~~~~~~ A simple computation then shows that

lim I~~(t ;e t
) I  < 1/c. In fact if u r n  (T;e

t) < 0, then by virtue of

of (4.46) and the monotonicity of • on [0 ,ir(c ))

0 > lim~~ (T;e
t) > ~(0;e~~ ) — 1/c (4.49)

T~ T

from which it is clear that lim l~~(T;e
t)I < 1/c.

t

If lim _~~(t;e
t) > 0 then again by virtue of (4.48) and the monotonicity of $

T -.T

0 lim _ .~(t;e
t) ~(1T(E);e

_t
) (4.50)
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But -

= (1-1/c)e~~~~~ - ~~~~~~~ (4.51)

= ( 1—1/ c) exp( ln [~~ +]~~~
) 

-

— exp( [1+1/c]ln [~~ -~-]~~~)

or

• 4~(~~~c);e
_t
) = ~~~~~~~~~~~~~ — (€

+1) (E +1) (4.52)
€ c-I. c-i

= (C+1)C [(i l) - ((+1)
_i
]c-i 

- 
c c—I.

- € +1 — c 
______

c — i  c c+ 1 -

I c — i  €+1— (—- — — ) < 1/c.
c c+1

• •
~; as (~-~-~) < 1 and c > 1. It thus follows directly from (4.47) that

sup 1~~ r ;e t ) I  ~~~. (4.53)
0�r<T C

Therefore , directly from (4.29) we obtain the value

G(O) = ~~ ( I  l~~ + ~ ~~i I~ 
- <E~~ NE >j~ + -f ~ ( 4 . 54 )

which is valid when T is restricted by (4.48); the corresponding value

of A 2 is nqw determined via substitution of ( 4 . 5 4 )  in ( 4 . 3 4) ,  a f te~ setting

• ( 0 )  = 1. We note in passing , that (4.48) implies that T < t if

€ > I. + 2/(e—1).

We may sum up the preceding discussion, relative to the example

= e t, ~ follows : Let ~ c N be any solution of (2.5), (2.12),

-- —~~~~~~~~~~- - —~_•• .
~~~~ ~~~~~• - - 

_ _ _ _ _ _ _ _ _ _ _ _ _
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(2.l4a) with c~(t )  = e~~ and c > I and choose T so that

T < min{
~~ r~ 

c ln[
~ ±+]

) (4.55)

Su ppose that the ini t ial  dat a 
~~~~~~

, 
~~~~ 

satisfy

l
~i 

+ 

~ ~~I I~ - - 2i~/€~~, i~ > 0 (4.56)

+ IE> j~ >‘~?~ l L E0 II f j (4.57)

with g defined by (4.54). Then if (4.40) is satisfied

(sup H~(T)Hj)
2 

� 2 (cosh At — 1) (4.58)
[0,T) A (c+T)

A 2 A

+ 
~c

2 I IE I l~ ~
osh At + ~~

-
~

-— <E ,E + 1 E > ‘ sinh At }
—o H 2 o 1  c o H(c +i ) A

for all t, 0 � t < T, where A is given by (4.34) with G(0) g and

•(0) = 1. On the other hand , if instead of (4.57), the initial data

satisfy

+ 

~ ~o
>
~i 

/1~T 1 I~ o I l j ~ 
(L ~.59)

then for ali t, 0 � t •< T

(sup I I~~(t) I ljj ) 2 
� 2 {c 2 1 1

~~O
1 I~ + (2 c v’~~~~) l  I~ I ~~t + 2gt2}. (4.60)

[0 ,T) (c +T)

~~~~~~~~~~ —-  ~~~~~~~~~~~~~~~~~~~~~~ ~~~~
-

-
-• - • -

~~
-—

~
- 

:•
_

~~ _ _ _  • 

_
:~~[ — ~~~~~~~



-3 5-

5. S tab i l i ty  Est imates  for Electric Fieids in Non-Con ducting

M~iterial Dielectrics

In this section we derive some stability estimates and upper

bounds to complement the growth theorems and lower bounds of the pre-

vious section ; our main result is based upon the following specialization ,

to he abstract system (2.16) — (2.18) , of a stability estimate derived

in [7] and subsequently applied to study the stability of an isothermal

linear viscoeiastic body :
t

Proposition IV . Let is € N be any solution of (2.16) - (2.18) and

assume that K(t ) sa t i s f ies  (2 . 2 1 ) , ( 2 . 2 2 ) .  If

E ( 0 )  s —k sup I I~(t)l 
‘ L H  B ~~~ 

k � 0 (5 .1)
[0 T) +

, —

then fo r all t , 0 ~ t < T

~(t)f 1
2 

� A [ max (j  l~~I 1
2 , I I g I  ( 2 ) ] 2 ( 1 6)  

- ( 5 . 2 )

where A > 0 is independent of t and ~ t /T .

As with our two previous propositions , it can be shown [7] that

this last result is a direct consequence of proposition I. Furthermore ,

in view of the established analogy between the initial-boundary value

which governs the evolution of the electric displacement field Q (t) and

the abstradt system (2.16) - ( 2 . 1 8 ), we can state

Theorer:: IV Let D c N be any solution of (2.6), (2.13), (2.l4b) and

suppose that ~(t) satisfies (2.42). If the initial data 
~o’~ 1 

sati s fy

- <D ~~ >
A sup I~ ( t ) I ,  (5.3)

° 
~~~0T) 

~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• _  

~~~~~~~~~~
• ______________________________________
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for some k � 0, then for all t, 0 � t < T

l I ~(t )IlA � A[max(IID0II A , lI D 1IIA )] 2~~~ 
(5.4)

where ~ > 0 is independent of t and 6 t/T.

In order to obtain the implications of this last theorem for the

behavior of the electric field ECt) we now make use of (2.1). In fact ,

directly from (2.1) we obtain the simple estimates

I I~ (t) I I~ ~l I Q ( t )  I l~ + I f~ I~~t - t)  I I l~~ t) I I~dt 
(5.5)

~ ~1IQ (t )lI j~ + sup l ” t ) l s u ~ I J Q ( T ) I I ~- C £ [0 ,T) [0 ,T)

� 1~~ + ‘r sup l”t 1) sup I l ~
(
~) 1l ~ •C [0 ,T) [0,T)

However , provided that the conditions of Theorem IV are satisfied

sup lI D (T ) li ~ 
~ ~1/2 sup (max [II~ HA , . ll ~illA ])l_T/T (5.5)

[0 ,-t) [0 ,t)

for all t, U � t < T. Recalling now the relations (4.6) and (4.8),

and assuming the validity of Lemma II, we may combine (5.5) and (5.6)

to obtain the estimates

~1/2H~ ( t ) H ~ � — (1 + T sup I~~r)l) 
(5.7)

C [0 ,T)

x sup (C 2 maxLj I~ 01 j ~~, lI E 1 + ~~~~~

[0 ,T)

A C l + T a(T))
C

c ma.X [IIEO IJ A I I~1 + 
q (O) 

.— —.-—-

- —
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for all t , 0 � t < T. There therefore remains for us the simple task

of determining conditions on E~ , ~~~~~~
, and ~(t) which will ensure the

va l id i~ j of the various hypotheses of Theorem IV . We have already

established that , granted the validity of Lemma II, the fact that •(t)

satisfies (4.11) implies , that ~(t) satisfies (2.42). Also , the cond-

ition on the ini t ia l  data , which is expressed by (5.3), is easily seen

to assume the form

÷ - � ~~~ ~~(t)j, k ~ 0 (5.8)
c ii[0,T)

But , in view of Lemma II (a), (5.5) is satisfied if

I I E  + E I I~ 
- <E ,NE >

A ~~ -2ka(T) 
, k � 0 (5.9)

—1 c —o H —o ~ -o H 3

We summarize the preceding discussion as

Corollary IV L~t E c N be any solution of (2.5), (2.12), (2.l4a) and

suppose that the hypotheses of Lemma II are satisfied . If 4 ( t )  satisfies

(4 .11) and the initial data E , 
~~ 

satisfy (5.9), for some k � 0, then

for all t , 0 s t < T, ~ (t) satisfies

lI (t)II~ S max [HE0)J ~~, ~~~ 
+ ~ (0) E J J A ])~~~

n/T (5.10)

( Tsup l~~(t)I \ A

where ~(T) A112 + ~
O
+
T
~UP l,ct)I)~

d A > 0 is independent of t.

[0 ,T) /

Example We return again to the simple example 4(t) = e t , for which

the hypotheses of Lemma II are satisfied if T c c . In fact , we have

alr- ’ady de:c r .ined that with T < c 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~(T;e
_t
) = Cl — I)e _ T 

- e~~
T ; a =

Furthermore , ~(t) satisfies (4. 11) if we choose T � c C 1 — y ) / ( c y + 1) .  As

a(T) €—~T 
the restriction (5.9), on the initial data, assumes the form

I IE + I E I I~ 
— <E ,NE >

A ~ —2k (5.11)—1 c — o  H —o ——o H 3,
~1c L c — T

with k � 8. A particularly simple and elegant stability estimate now

appears in the special case where = 0: Let ~ c N be any solution

of (2.5), (2.12), (2.14a) with ~~t) = e
_t 

and T � c(1—y)/ (€y+1). If

E = 0 and E satisfies—1 — —o

I I~0 I I~ — c 2<E N E > ’ � — 2k/ijc (c—T ), k � 0 (5.12)

there exists A > 0 (independent of t) such that for all t C [0 ,T)

• I i ~ (t )lI A ~ sup (d I E 1 1 A ) 2 T /T) 
(c > 1) (5.13)

-. 
I l ~~(t)II~ ~ ( c~~)~~~~)’ 1~ o 11fi (c  �1) (5.14)

Our other stability estimate is also a consequence of a specialization ,

to the abstract system (2.16) — (2.18), of a result derived in [7], namely

Proposition V Let u c P4 be any solution of (2.16) - (2.18). Assume

that K(t) satisfies (2.21), (2.22) and that E ( 0 )  � - E for some k � 0. If

(i) sup I i~ (t)I ‘ L(H H ) ~ k/OyT (5.lSa)
F 0 ,T) ~~ +

, 
—

and

—~-~~~~~~~~~ • - 
- - - —-—••

~~ 
- - l. ~~~~~~~~~~~~~~~~~~~~
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(ii) u r n  4 un (IIu (T) I1
2 + ~(T+t0

)2} = 0, ( 5 . 2L 5b)
T+o~

2 2
for ~~ , t nonnegative constants satisfying ~~~ s !~ I I , then

I i~ (t ) I l 2 
~ ~(t 0 ;T;6) I I~ I I 2 , 0 ~ t < T (5.16)

where ~(t ;T;~~) 2(T/t + 1)2+6 with 6 = 
G(0)

0 0

From Proposition V we immediately deduce

Theorem V Let D c N be any solution of (2.6), (2.13), (2.l4b). Assume

that ~ (t ) sa t i s f ies  ( 2 . 4 2 )  and that

- <D ,ND~~fj � - 2k (5.17)

for some K � 0.

( 1) s~~ ~(z)~ -~ c~ k/0yT 
(5 . 1 8)

[0,T)

( i i)  l i n k  ~ 1n~ D ( T )  I IA + ~(T + t0
)2) 0, - (5.19)

T+~

for B, to nonnegative constants 
satisfying ~~~ ~ I I~~I IA ’ then

I I ~(t )IIA � 
~
(t ;T;o )fID H A , 0 � t < T (5.20)

where ~(t ;T;ã) = 2(T/t + 1)2+6 with

= 
G (0? 

= 
~

[ II
~1Il A - o~~~ o H  + p 1 1

In order to deduce some implications of Theorem V for the growth

behavior of the electric field , we proceed as follows : First of all,

(ll42) is agai. implied by (4.11) (if the conditions guaranteeing the



validity of Lemma II are satisfied ) and the restriction (5.17), on the

initial data , clearly assumes the equivalent form

H E 1 + ~~~~ E l l A  — <E ,NE >ç1 
� — 2~ /c 2, - (5 .21)

with k > 0 .  If , in addition to the hypotheses of Lemma II , we know

that •(-t ) satisfies (3.29), then it follows from Lemma III (b) that

(5.18) is implied by the inequality

sup I~ (t) 1 (c - TI~~(0)I) 
- l~~o)i

2
[0 ,T) 

> . (5.22)
+ T2 sup j3(t)I) 

— OyT

[0 ,T)

As the natural logarithm is monotonically increasing and (by virtue of (4.8))

I l~~( T ) I  I~ = lim _ I IQ (T)I Ij~ 
� sup I l~ ( t ) I  l j~ 

� XT sup L~( t ) l  Ijj (5.2 3)
[0,T) L0 ,T)

it is clear that (5.19) will be satisfied if

lim 4 ln{~~~( sup I I ~(t )Il ~
)2 + B(T + t )2} 0 (5.24)

C0 ,T)

with B, to nonnegative constants satisfying

� I I~Q II~ (5.25)

Finally , we.note that, in view of Lemma 11(a)

6 s 6* -~- [II E 1 + E01I ~ - ~~~~~~~~~~~~~~~~~~~~~ 
+ 2~~~ T) j (5.26)

Combining our results with the estimates (5.20) and (5.53) yields

Ccr~ 11dry V E c M be any solution of (2.5), (2.12), (2.14a). Suppose

:nat ~. ne hy :~:-t .  ses of Lemma II are satisfied and that ~ satisfies (2.42)

_ _ _ _ _ _ _ _  -- ~~~~~~~~~ -~~~~~~~~~
-— - A
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and (5.18). If the initial data satisfy (5.21))with jc. a 0)and (5.24),

for B, t0 nonnegative constants satisfying 
( 5 . 2 5 ) 1then

lL (t)Hf~ 
� (1 + TaCT))1V~ l I E ~~ 

0 � t < T (5.27)

with ~~~ t0;T ,6~~) = 2(T/t0 
+ ~)2+6* and 6* given by (5.26).

References

1. Maxwell, J. C., A Treatise on Electricity and Magnetism

2. Toup in , R. A. C R. S. Rivlin , “Linear Functional Electromagnetic
Consti-tutive Relations and Plane Waves in a Hemihedral Isotropic
Material,” Arch. Rat. Mech. Anal, Vol. 6 (1960), 188-1.97.

3. Hopkinson , J. “The Residual Charge of the Leyden Jar”, Phil. Trans.

~~~~~ Soc . London, vol. 167, (1877), 599—626 .

4 . Dav is , P. L . ,  “Hyperbolic Integrodifferential  Equations Arising
in the Electromagnetic Theory of Dielectrics” , JDE , vol. 18
( 1975) , 170—17 9 .

5. Bloom , F . ,  “Continuous Data Dependence for an Abstract Volterra
Integrodifferent ia l  Equation in Hilbert Space with Applications
to Viscoelasticity ” , Annali della Scuola Normale [PISA] vol IV
no. 1 (1977), 179—207.

6. Bloom , F., “Growth Estimates for Solutions to Initial-Boundary
Value Problems in Viscoelastici ty” , J. Math. Anal. Appi. vol. 59 , ( 1977)

7.  Bloom , F . ,  “On Stability in Linear Viscoelasiticty” , Mech. Research
Comm ., vol. 4, (1976), 143—150.

8. Bloom , F. “Stability and Growth Estimates for Volterra Integro-
differential Equations in Hu bert Space”, Bull A.M .S., vol. 82
(J uly , 1976) , 6 0 3 — 6 0 6 .

9. Daferinos , C.M., “An Abstract Volterra Equation wIth Applications
to Linear Viscoelasticity ” , JDE , vol. 7 (1970 , 554—569 .



r 
- ______________

S I C U R I T \  C L A SS IF~~. ‘. T i ~~ N •~~t T H I S  PAUF. (K ? ,

REP~ RT ~~ ~ A R E A D  INSTRUCTIONS
• . • Ji ~ HEFORE COMPLETING FORM

I. R EPORT NUMBER 
/ 

2. GOVT ACCESS ION NO. 3. RECIP IENT’ S C A T A L O G  NUMBER 
—

AFO~R.TR. 7 7 - 1 2 1 8 / _____________________
4. T I T L E (and SubUti.) 5. TyPe OF REPORT 6 PERIOD COVERED
STABILITY AND GROWTH ESTIMATES FOR ELECTRIC
FIELDS IN NON-CONDUCTING MATERIAL D IELECTR ~5S Interi m

( 6. PERFORMING OR G. REPORT NUMBER

7. A UTH OR( ,> e. CONTRACT OR GRANT NUMBER(a)
Frederick Bloom

AFOSR 77—3396
9 PERFOR MING OR G A N I Z A T I O N  NAME AND ADDRESS 10. PROGRAM ELEMENT , PROJECT . T ASK

Univers i ty of South Caro l ina A R E A 6 W O R K  U N I T  N U M B E R S

Departmen t of Mathematics & Computer Science 6IlO2 F 2304/A4
Co l um b ia , SC 29208

I I. CO~ ,TR OLL IP(G QFFICE ~~~~~ kND A~~DRES$ 12. REPO9LQA TE
Air I-orce oft i ce or Sc i ent i t i c Research /NM 19/I
B o i l i ng AFB , Washin gt on , DC 20332 ,

~ NU U~~~R O F PA GES

14. M ONITORIN G AGENCY N A M E  & ADDRESS (i( different fro,,, Controllini Off ice) IS. SECURITY CLASS. (of title report)

U N C L A S S I F I E D
IS. . DECLASSIFI CATION/ DOWNGRADING

SCI4EDUL E

16. DISTRIBUTION STATEMENT (of thEe Repor t )

Approved for public release; distribution un limited

17. DISTRI B UTION STATEMENT (of the abetracl entered i~ Block 20, If differen t from Report)

lB . S U P P L E M E N T A R Y  NOTES

19. K E Y  WORDS (Contl nu. on ,erera. s ide if nec~~.asry and fden’ffy by block number)

~0. AB STRACT (Cont inue on r.ve,ae aide If n.c...e,,. .nd identif y by block numb.,)

Employ i ng results derived b~—t he--e~ thos’~for solutions of an abs t ract
i nt eg rod i f fe ren t i4a l •q quation in Hu bert space , w.—eb#e.i.n~sta b i l i ty and
growth es tima tes~ for elec tric fields in nonconduct ing material dielectrics .
I t is assumed that a linea r constitutive equat ion of Maxwe ll— Hopkinson
ty pe relates the elect ric displacement field in the dielectr ic; specific
resul ts for a simple memory func tion of exponential type are giv en .

DD jAN 73 1473 EDITION OF I NOV 63 IS OBSOLETE UNC LASS IF  I ED 
-

-

SECURITY CLA S S IFICA’ I ’ ,ON OF THIS  PAGE (IThon V.,. rnte,.4t

•“— 

-~~~~~~~ -. - -


